The Decision Maker

The Cost of Building a Data Warehouse for an Analytics Platform

Posted by CU 2.0 on Jan 25, 2019 10:02:00 AM

Credit unions can benefit greatly from collecting and storing information to leverage Big Data. The cost of building a data warehouse can be steep, though. If you’re considering building a data warehouse for your credit union, it’s important to know what you’re getting yourself into.

The benefits of building a data warehouse speak for themselves in the financial world. Getting into the data analytics game isn’t cheap, however. It’s not as simple as just buying a data warehouse and watching a video tutorial; no, getting started requires a large initial investment as well as ongoing support and upkeep costs.

Here are a couple of the common issues associated with building a data warehouse for the credit union industry.

Initial Investment Costs

There are two major expense considerations for any enterprising credit union looking to construct its own data warehouse. The most pressing of the two is the financial cost, and the second is the time invested. Because we’re talking specifically about credit unions, let’s discuss the monetary side of this investment first.

For an individual credit union, the cost of building a data warehouse or data lake for an analytics platform starts at around $500,000 at the low end. Most data warehouses and data lakes run well over the million-dollar mark. While it’s certainly a worthwhile investment, it can also be prohibitively expensive for smaller, more community-focused credit unions.

 The second major cost factor is time, though we could also say that it costs patience as well. Regardless of the size of the warehouse and the experience of the people putting it together, building a data warehouse takes an average of two or three years. If you want an analytics platform immediately, then creating one in-house from the ground up might not be your best option.

Read More

Topics: Data Integration, Analytic Data Model, Enterprise Data Management, Data Storage, Insight Platform

The Comfort of Data-Driven Analytics Decisions for Your Credit Union

Posted by Nate Wentzlaff on Nov 29, 2018 12:22:22 PM

As the next generation begins making financial decisions, credit unions will be able to comfort them with data- and analytics-driven product recommendations.

In the realm of financial institutions, the credit union still offers more than its competition. Whereas credit unions were hampered by limited technological options in the past, new developments in data collection, integrations, and analytics are helping them compete with banks.

Recently, my wife and I were shopping for a mattress. We began the process by “trying out” mattresses by how they felt. My wife thought she preferred firm mattresses, while I thought I preferred soft ones. As we tried mattress after mattress, my wife would ask me, “what do you think about this one,” to which I would usually reply, “It feels pretty good to me.” We became frustrated by our search until we found a mattress store that comforted us with data.

The mattress store (Becker Furniture World) is locally owned with only 8 locations (does this sound familiar to your credit union?). They approached mattress shopping from a data-driven way. By using an analytic data model (developed by Sleep to Live Institute), they are using analytics to aid customers in their mattress investments through data sensors and user input. The data comforted us enough that we decided to purchase one of the mattresses it recommended.

Data Acquisition from Users

When we walked into the Becker Furniture World, it was different than all the other mattress stores. There was a futuristic-looking canopy near the front of the store. We asked a store associate what the machine was and were informed that it collected data from our bodies and sleeping patterns to recommend the best mattresses. Before entering the contraption, we entered in personal data about ourselves using ranges for age, weight, and height, along with other qualitative data including where we currently have pain and our sleeping preferences.

After entering in our personal data, we both laid down on the bed (hooked up to data sensors). This data was then sent to the Sleep to Live’s data pool, and a report was printed for us. The report displayed statistics about us and recommended mattresses throughout the store.

Read More

Topics: Big Data, Analytic Data Model, Data-Driven

How Credit Unions Can Win the Big Data Play

Posted by CU 2.0 on Jul 2, 2018 12:47:00 PM

Ask executives at the money center banks how they plan to win, against both fintechs and smaller institutions like credit unions, and they smirk as they say two words, big data.

Big data is today’s magic.  How does Amazon knows what book you want to read next, or what music you want to buy, or when you are about to run out of cat treats? Those are simple examples but the answer is big data. Amazon crunches a lot of data, in a blink of an eye, and it knows what you want, maybe before you know.

The race now is on inside financial institutions to crunch lots of data and to achieve similar predictive intimacy about their customers and members. 

Read More

Topics: Big Data, Data Pool, Analytic Data Model, Collaboration, Data Lake, Data Ownership

Leveraging Data to Create Exceptional Member Experiences at Ideal Credit Union [VIDEO]

Posted by Mark Portz on Apr 17, 2018 1:02:00 PM

 

MnCUN Interviews: Ideal CU and OnApproach Work Together to Leverage Data Analytics' Potential... from CUbroadcast on Vimeo.

At the Minnesota Credit Union Network (MnCUN) Annual Conference, Paul Ablack, CEO, OnApproach and Alisha Johnson, Executive Vice President of Operations for Ideal Credit Union, joined Mike Lawson, Host of CUbroadcast, to discuss data access, member profitability, member engagement, data lakes, timely and targeted marketing, chatbots, real-time analytics, and credit union collaboration.  

Read More

Topics: Video, Membership, Analytic Data Model, Case Study

Credit Unions and Data Lakes – The Next Wave

Posted by Peter Keers, PMP on Oct 5, 2017 12:03:00 PM

In two previous OnApproach blogs, the concept of a data lake was defined and differentiated from a traditional data warehouse. Yet, a key point was a data lake and a data warehouse are not mutually exclusive. In fact, a structured data warehouse could be a subset of an overall data lake architecture.

Simply stated, a data lake is an effective way to store and access very large quantities of data.

What does this mean for credit union decision makers?

Read More

Topics: Data Pool, Analytic Data Model, Data Lake

A Day in the Life of a Data Analytics SVP: Making Use of Your Credit Union’s Data

Posted by Mark Portz on Aug 24, 2017 11:17:42 AM

If you are a credit union still waiting on the data analytics sidelines, you’re already too late. Data analytics is not a fad – it is a major opportunity for credit unions to gain deeper insights and improve decision making to create a strong and competitive future. However, it is not always clear where credit unions should begin. To help answer these questions, John Best recently spoke with Clay Yearsley, SVP of Data Analytics at Texas Trust Credit Union about getting started on the analytics journey, the skills needed, and the value of data in the podcast, “Catching a Unicorn – Discussing Data Analytics with Clay Yearsley”.

Read More

Topics: Analytic Data Model, Data Analytics, Leadership, Podcast

Lagging Contenders: How Credit Unions Can Catch Up in Data and Analytics - Part 1

Posted by Peter Keers, PMP on Aug 8, 2017 11:18:43 AM

The message has been ringing load and clear throughout the credit union industry for years: make better use of data and analytics or lose “member share” to more progressive CU peers or (horrors!) banks and fintech startups.

Despite the warning cries, the proportion of credit unions embracing this trend is (horrifyingly!) low.

Read More

Topics: Data Integration, Analytic Data Model, Data Analytics, Data Quality

What is a Data Lake? - Part 2: Sink or Swim

Posted by Mark Portz on Jul 26, 2017 11:07:00 AM

In my previous blog, “What is a Data Lake? Part 1”, I discussed how to define a data lake, and how it differs from a data warehouse. To briefly recap, a data lake is a massive data repository for raw data in its native format. To better understand the idea, let’s dive a bit deeper and get to know the advantages and disadvantages surrounding data lakes.

To start, there are a number of advantages data lakes serve for financial institutions:

Read More

Topics: Data Pool, Analytic Data Model, Data Lake

What is a Data Lake? - Part 1: Testing the Waters

Posted by Mark Portz on Jul 18, 2017 11:03:00 AM

Financial institutions all over are working to build effective data strategies and improve decision-making. With so many new technologies and innovations out there, it can get very difficult to keep up with the industry and even keep straight the buzzwords we hear throughout the day. In this piece, let’s dive in to better understand what makes a data lake.

Read More

Topics: Data Pool, Analytic Data Model, Data Lake

Building for the Future

Posted by Michael Cochrum on Apr 5, 2017 11:15:00 AM

When my brother and I were kids, we liked to build things. We built forts, ramps and anything else we could fashion out of scrap wood.  Typically, our projects served a specific function, to ward off rival “street gangs” of preteens from another block, to propel our dirt bikes into the air, or whatever else we decided could or would result in our becoming temporarily disabled.  We thought we were good builders, but the greatest evidence that we were not, is that our work does not exist in any form today.

Read More

Topics: Big Data, Analytic Data Model, FinTech